Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rachid Ouarsal, ${ }^{\text {a }}$ Aziz Alaoui Tahiri, ${ }^{\text {a }}$ Mohammed Lachkar, ${ }^{\text {a }}$ Zineb Slimani, ${ }^{\text {a }}$ Brahim EI Bali ${ }^{\text {a }}$ and Michael Bolte ${ }^{\text {b* }}$

${ }^{\text {a }}$ Laboratoire des Matériaux et Protection de l'Environnement, Département de Chimie,
Faculté des Sciences Dhar Mehraz, BP1796 Atlas 30003, Fès, Morocco, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439
Frankfurt/Main, Germany
Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{P}-\mathrm{O})=0.004 \AA$
H -atom completeness 61%
R factor $=0.036$
$w R$ factor $=0.086$
Data-to-parameter ratio $=25.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Barium dihydrogen phosphite hemihydrate

$\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ contains ninefold-coordinated Ba ions connected by dihydrogen phosphite anions to form a threedimensional network. The asymmetric unit contains two Ba^{2+} ions, four $\left[\mathrm{H}_{2} \mathrm{PO}_{3}\right]^{-}$ions and one water molecule.

Comment

Crystal structure analyses of alkaline-earth dihydrogen phosphites have been undertaken for several decades (Ouarsal et al., 2002, and references therein). Continuing these investigations, we report here the structure of $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$. Fig. 1 shows the asymmetric unit. The Ba ions occupy two different ninefold-coordinated sites. The coordination of Ba 1 is made up of seven monodentate dihydrogen phosphite groups and two O atoms from two water molecules. Ba 2 is surrounded by six monodentate and one bidentate dihydrogen phosphite ligands. The average $d_{\mathrm{Ba}-\mathrm{O}}$ is 2.83 (11) and $2.86(10) \AA$, respectively. In $\mathrm{BaZn}_{3}\left(\mathrm{HPO}_{3}\right)_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ba}$ is twelvefold-coordinated with $d_{\mathrm{Ba}-\mathrm{O}}$ ranging from 2.876 to 3.053 A (Ortiz-Avila et al., 1989). Two neighbouring BaO_{9} units, related by a centre of symmetry, share an $\mathrm{O}-\mathrm{O}$ edge, to form a $\mathrm{Ba}_{2} \mathrm{O}_{16}$ dimer. Two such dimers are joined through an edge ($\mathrm{O} 33-\mathrm{O} 43$) and a face $(\mathrm{O} 41-\mathrm{O} 23-\mathrm{O} 32)$ to build up a double channel parallel to [010] (Fig. 2). There are four crystallographically independent phosphorus centres, each

Figure 1
Perspective view of the asymmetric unit of the title compound, with the atom numbering; displacement ellipsoids are at the 50% probability level. Symmetry operators for equivalent atoms: (i) $3 / 2-x,-1 / 2+y, 3 / 2-z$; (ii) $1-x, 1-y, 1-z$; (iii) $2-x, 1-y, 1-z$; (iv) $2-x,-y, 1-z$; (v) $3 / 2-x,-1 / 2+y$, $1 / 2-z$; (vi) $x,-1+y, z$; (vii) $1-x,-y, 1-z$.

Received 22 July 2002 Accepted 29 July 2002 Online 9 August 2002

Figure 2
Packing diagram of the title compound.
tetrahedrally coordinated by one H and three O atoms. The $\mathrm{P}-\mathrm{O}$ bond distances are in the usual range, similar to those reported in $\mathrm{Sr}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{2}$ (Ouarsal et al., 2002).

Experimental

25 ml of $\mathrm{BaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{M})$ and 25 ml of phosphorous acid (1 M) were mixed in water. The mixture was stirred for 8 h at 333 K , before being left at room temperature. After a few days, colourless crystals were deposited. These were filtered off and washed with a solution of ethanol (80\%).

Crystal data

$\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=308.32$
Monoclinic, $P 2_{1} / n$
$a=11.2351$ (8) \AA
$b=8.7244$ (5) \AA
$c=14.0518$ (9) \AA
$\beta=90.493(6)^{\circ}$
$V=1377.30(15) \AA^{3}$
$Z=8$

```
\(D_{x}=2.974 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 32287
        reflections
    \(\theta=4.0-32.7^{\circ}\)
    \(\mu=6.21 \mathrm{~mm}^{-1}\)
    \(T=173\) (2) K
    Plate, colourless
    \(0.28 \times 0.18 \times 0.05 \mathrm{~mm}\)
```


Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan (MULABS; Spek, 1990; Blessing, 1995)
$T_{\text {min }}=0.275, T_{\text {max }}=0.747$
38630 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.086$
$S=0.93$
4582 reflections
179 parameters
H atoms treated by a mixture of independent and constrained refinement

4582 independent reflections
3635 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.097$
$\theta_{\text {max }}=31.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-12 \rightarrow 12$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0533 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=2.01 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.79 \mathrm{e}^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.0045(3)
\end{aligned}
$$

Table 1

Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1A \cdots O13 ${ }^{\mathrm{i}}$	$0.8400(10)$	$2.17(3)$	$2.947(5)$	$153(7)$
O1-H1A \cdots O43				
O1-H1B \cdots O12 ${ }^{\mathrm{ii}}$	$0.8400(10)$	2.41 (6)	$2.909(5)$	$118(6)$
Symmetry codes: (i) $x, y-1, z ;$ (ii) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$	$1.986(12)$	$2.818(5)$	$171(7)$	

The water H atoms were located in a difference Fourier synthesis and were refined freely, constraining the $\mathrm{O}-\mathrm{H}$ distance to $0.84 \AA . \mathrm{H}$ atoms bonded to P were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{P})\right]$, using a riding model with $\mathrm{P}-\mathrm{H}=$ $1.30 \AA$. The H atoms bonded to the O atoms of the dihydrogen phosphite ions could not be located and were omitted from the refinement. The ten highest peaks in the difference electron-density map are located close $(\sim 1 \AA)$ to the Ba atoms and the deepest hole is 0.69 Å from Ba1.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Ortiz-Avila, C. Y., Squattrito, P. J., Shieh, M. \& Clearfield, A. (1989). Inorg. Chem. 28, 2608-2615.
Ouarsal, R., Tahiri, A. A., El Bali, B., Lachkar, M. \& Bolte, M. (2002). Acta Cryst. E58, i19-i20.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical
X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.

